1. Apache Spark 3.5.1 Documentation
pyspark.sql.functions.length: This official documentation confirms that length is a built-in function that "computes the character length of string data". This supports Option B as the correct native implementation.
Source: spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.functions.length.html
2. Databricks Documentation
"User-defined functions (UDFs)": This documentation explicitly warns about the performance cost of UDFs: "UDFs are a black box for the optimizer... Because the optimizer does not have visibility into the logic of the UDF
it cannot use any of its strategies to optimize the computation... It is recommended to use the built-in functions... before falling back to UDFs." This justifies choosing the built-in function (Option B) over a UDF implementation.
Source: Databricks Documentation > Apache Spark > Development > User-defined functions (UDFs)
3. Apache Spark 3.5.1 Documentation
pyspark.sql.functions.udf: This document details the creation of a UDF for DataFrame use. It shows that the second argument is the returnType
confirming that StringType() in Option D is incorrect for a function that returns an integer length.
Source: spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.functions.udf.html
4. Apache Spark 3.5.1 Documentation
pyspark.sql.UDFRegistration.register: This page shows the correct syntax for registering a UDF for use in the SQL namespace
as demonstrated in Option C. This confirms that Option C is a valid way to define a UDF for SQL
but not to apply it in the DataFrame API as shown in the other options.
Source: spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.UDFRegistration.register.html