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Question: 1
Why is it challenging to apply diffusion models to text generation?

A. Because text generation does not require complex models
B. Because text is not categorical
C. Because text representation is categorical unlike images

D. Because diffusion models can only produce images

Answer:

C

Explanation:

Standard diffusion models, which have achieved state-of-the-art results in image synthesis, are
fundamentally designed for continuous data. They operate by iteratively adding Gaussian noise to
data (like image pixel values) and then learning to reverse this process. Text, however, is
composed of discrete, categorical units (tokens or words from a finite vocabulary). Applying a
continuous noise model directly to these discrete representations is not straightforward. This
mismatch requires specialized architectures and techniques, such as discrete diffusion processes
or embedding text into a continuous space, making the application of diffusion models to text
generation a significant challenge.

Why Incorrect Options are Wrong:

A: Text generation is a highly complex task that leverages some of the largest and most
sophisticated models in Al, such as large language models (LLMs).

B: This statement is factually incorrect. Text is fundamentally composed of discrete, categorical
units like words or sub-word tokens from a defined vocabulary.

D: While diffusion models gained prominence through image generation, they are a general class
of generative models that have been successfully adapted for other data types, including audio,
video, and text.

References:

1. Austin, J., Johnson, D. D., Ho, J., Tarlow, D., & van den Berg, R. (2021). "Structured Denoising
Diffusion Models in Discrete State-Spaces." Advances in Neural Information Processing Systems
(NeurlPS), 34, 17981-17993. In the abstract, the authors state, "Denoising diffusion models have
shown remarkable success in modeling continuous data... However, their formulation relies on a
Gaussian noise assumption, which makes them inapplicable to discrete data such as text..."

2. Li, X., Li, J., et al. (2022). "Diffusion-LM Improves Controllable Text Generation." arXiv preprint
arXiv:2205.14217. In the introduction (Section 1), the paper notes, "...applying diffusion models to
discrete data such as text is not straightforward, as the standard Gaussian noise-based diffusion
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process is not well-defined for discrete variables." (DOI:
https://doi.org/10.48550/arXiv.2205.14217)

3. Gong, S., et al. (2023). "A Survey on Diffusion Models for Text Generation." arXiv preprint
arXiv:2308.03846. Section 2, "Challenges," explicitly states, "The primary challenge in applying
diffusion models to text generation lies in the discrete nature of text. Unlike images, which are
represented by continuous pixel values, text consists of discrete tokens... The original diffusion
models... are designed for continuous data and rely on adding Gaussian noise, which is not
directly applicable to discrete data." (DOI: https://doi.org/10.48550/arXiv.2308.03846)
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Question: 2

Which LangChain component is responsible for generating the linguistic output in a chatbot
system?

A. Document Loaders

B. Vector Stores

C. LangChain Application
D. LLMs

Answer:

D

Explanation:

In the LangChain framework, Large Language Models (LLMs) are the central component
responsible for generating linguistic output. They are the core reasoning and language-producing
engines. While other components like Document Loaders and Vector Stores prepare and retrieve
data to provide context, it is the LLM that processes this information along with the user's prompt
to generate a coherent, human-like text response. The LLM is the "brain" of the operation that
formulates the final words of the chatbot's reply.

Why Incorrect Options are Wrong:

A. Document Loaders are used to ingest data from various sources (e.g., PDFs, text files) into a
usable format. They handle data input, not linguistic output generation.

B. Vector Stores are specialized databases that store and retrieve vector embeddings of text.
They are crucial for finding relevant information but do not generate new text themselves.

C. LangChain Application is a general term for the entire system built using the framework; it is
not a specific component responsible for generating language.

References:

1. LangChain Official Documentation, "LLMs": The documentation explicitly states, "Large
Language Models (LLMs) are a core component of LangChain. LangChain provides a standard
interface for all LLMs... The most basic and common use case is simply calling it on some text."
This section details how LLMs are the components that take text input and produce text output.
Source: LangChain Documentation, docs/modules/modelio/lims/.

2. Oracle Cloud Infrastructure (OCI) Documentation, "Build a RAG solution with OCI Generative
Al, LangChain, and OCI OpenSearch": This official Oracle tutorial demonstrates a typical
LangChain architecture. It clearly delineates the roles, showing that the OCI Generative Al
service (which provides the LLM) is the component called at the end of the chain to "generate an
answer" based on the retrieved context.
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Source: Oracle Cloud Infrastructure Blogs, "Build a RAG solution with OCI| Generative Al,
LangChain, and OCI OpenSearch," published November 20, 2023. Section: "Create a LangChain
QA chain and generate an answer."

3. Stanford University, CS324 - Large Language Models, "Lecture 1: Introduction + Foundation
Models": Course materials explain that the fundamental capability of an LLM is to predict the next
token, which is the mechanism for generating sequences of text (linguistic output). LangChain is a
framework that orchestrates calls to these models.

Source: Stanford University, CS324 Courseware, Lecture 1 Slides, "Core capability: next token
prediction."
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Question: 3
When is fine-tuning an appropriate method for customizing a Large Language Model (LLM)?

A. When the LLM already understands the topics necessary for text generation
B. When the LLM does not perform well on a task and the data for prompt engineering is too large
C. When the LLM requires access to the latest data for generating outputs

D. When you want to optimize the model without any instructions

Answer:

B

Explanation:

Fine-tuning is the appropriate method when a pre-trained Large Language Model (LLM) does not
perform adequately on a specific, specialized task, and the volume of example data required to
guide it exceeds the practical limits of prompt engineering. Prompt engineering is constrained by
the model's context window. When you have a large, high-quality dataset of examples
(input-output pairs) that is too extensive to fit into a prompt, fine-tuning is used to adapt the
model's internal weights. This process effectively "teaches" the model the new skill or style,
leading to better performance on the target task.

Why Incorrect Options are Wrong:

A. If the LLM already understands the topics, simpler methods like prompt engineering are often
sufficient and more cost-effective for guiding its output style or format.

C. Accessing the latest data is the primary use case for Retrieval-Augmented Generation (RAG),
which provides the model with up-to-date information at inference time, not fine-tuning.

D. Fine-tuning is a supervised learning process that explicitly requires a dataset of examples,
which serve as instructions for how the model should behave. It cannot be done without them.

References:

1. Oracle Cloud Infrastructure (OCI) Documentation: In the "Generative Al" service
documentation, under "Custom models and fine-tuning," it states: "Fine-tuning is useful when you
want the model to learn a new skill or a new style of answering... You need a large dataset of
high-quality examples to fine-tune a model... If prompt engineering doesn't give you the results
that you want, you can try fine-tuning a model." This directly supports the scenario where the
model's performance is poor and a large dataset is available. (See OCI Documentation Al and
Machine Learning Generative Al Custom models and fine-tuning).

2. Stanford University Courseware: Stanford's CS324, "Large Language Models," lecture notes
explain the trade-offs between in-context learning (prompting) and fine-tuning. It highlights that
while in-context learning is data-efficient, its performance can be limited, and it is constrained by
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the context length of the model. Fine-tuning is presented as the solution for adapting the model's
parameters when a larger dataset is available to achieve higher performance on a specific task.
(See Stanford CS324, Winter 2023, Lecture 5: "Adaptation").

3. Academic Publication: Lialin, V., et al. (2023). "Which Prompts Work? A Systematic Study of
Prompting Strategies in Large Language Models." This paper discusses the limitations of
prompting, noting that performance can be sensitive to the examples provided. It implicitly
supports the need for fine-tuning when the complexity or volume of required examples makes
prompting impractical, stating that fine-tuning allows for more stable and robust task adaptation by
modifying model weights. (Available via arXiv:2310.12223, Section 2.1 "Related Work").
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Question: 4
What is LangChain?

A. A JavaScript library for natural language processing
B. A Python library for building applications with Large Language Models
C. A Java library for text summarization

D. A Ruby library for text generation

Answer:

B

Explanation:

LangChain is an open-source framework specifically designed for developing applications
powered by Large Language Models (LLMs). It provides a standard interface for "chains," which
are sequences of calls to LLMs or other utilities. The framework's core value lies in its modular
components for working with LLMs, including prompt templates, memory, data-augmented
generation, and agents. The primary and most mature implementation of LangChain is the Python
library, which is widely used for building context-aware and reasoning applications. While a
JavaScript/TypeScript version also exists, Python is the original and predominant language for the
framework.

Why Incorrect Options are Wrong:

A: While a JavaScript version exists, LangChain's primary implementation is in Python, and its
purpose is specifically for building applications with LLMs, a subset of NLP.

C: LangChain is not a Java library. Text summarization is a possible application, but not the
framework's core definition.

D: LangChain is not a Ruby library. Its main libraries are for Python and JavaScript/TypeScript.

References:

1. Official LangChain Documentation: The introduction clearly states, "LangChain is a framework
for developing applications powered by language models. It enables applications that... are
context-aware... and reason... The main value props of the library are: Components... and
Use-Case Specific Chains." The documentation is centered around its Python and JavaScript
libraries.

Source: LangChain Authors. (2024). What is LangChain?. LangChain Python Documentation.
Retrieved from https://python.langchain.com/v0.2/docs/introduction/

2. University Courseware: Stanford University's course on "Generative Al for Human-Computer
Interaction and Engineering" discusses LangChain as a key tool for building applications on top of
LLMs. Lecture materials describe it as a framework that "glues" together LLMs with other tools
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and data sources.

Source: Stanford University, HCI 547 / CS 347. (2023). Lecture 04: Building LLM-backed Web
Apps. Retrieved from https://hci-547.github.io/lectures/04-building-lim-backed-web-apps.html
3. Academic Publication: A peer-reviewed paper on building LLM applications describes
LangChain as follows: "LangChain is a popular open-source framework that simplifies the
development of applications using LLMs. It provides a set of tools, components, and interfaces
that enable developers to chain LLM outputs with external data sources..."

Source: Zamfirescu-Pereira, J., et al. (2023). Why Johnny Can't Prompt: How Non-Al Experts Try
(and Fail) to Engineer LLM Prompts. In Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems (CHI '23). Association for Computing Machinery, New York, NY,
USA, Article 353, Page 5. https://doi.org/10.1145/3544548.3581388
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Question: 5

Given the following code block: history = StreamlitChatMessageHistory(key="chatmessages")
memory = ConversationBufferMemory(chatmemory=history) Which statement is NOT true about
StreamlitChatMessageHistory?

A. StreamlitChatMessageHistory will store messages in Streamlit session state at the specified
key.

B. A given StreamlitChatMessageHistory will NOT be persisted.
C. A given StreamlitChatMessageHistory will not be shared across user sessions.

D. StreamlitChatMessageHistory can be used in any type of LLM application.

Answer:
D

Explanation:

The StreamlitChatMessageHistory class is a specialized component from the LangChain library
designed specifically for integration with Streamlit applications. Its core functionality relies on
using Streamlit's st.sessionstate to manage chat history. This dependency means it can only
function within a running Streamlit application environment where st.sessionstate is available. It
cannot be used as a generic message history mechanism in other types of applications, such as a
Flask web server, a command-line interface, or a standard Python script, because the required
Streamlit context would be absent.

Why Incorrect Options are Wrong:

A. This is incorrect. The primary purpose of StreamlitChatMessageHistory is to wrap Streamlit's
session state, storing messages under the specified key.

B. This is incorrect. Streamlit's session state is ephemeral and exists only for the duration of a
user's session. It is not persisted across server restarts or different user sessions.

C. This is incorrect. A fundamental feature of Streamlit's st.sessionstate is that it is isolated for
each unique user session, ensuring that one user's chat history is not accessible to another.

References:

1. LangChain Official Documentation: The documentation explicitly states that
StreamlitChatMessageHistory is a "Chat message history that stores messages in Streamlit
session state." This confirms its specific purpose and dependency on the Streamlit framework,
invalidating the claim it can be used in "any" LLM application.

Source: LangChain Python Documentation,
langchaincommunity.chatmessagehistories.streamlit.StreamlitChatMessageHistory.

2. Streamlit Official Documentation: The documentation on Session State clarifies its behavior,
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which underpins the functionality of StreamlitChatMessageHistory. It states, "Session State is a
way to share variables between reruns, for each user session... Streamlit provides a
dictionary-like object called st.sessionstate that is unique to each user session." This supports the
correctness of options B and C.

Source: Streamlit Documentation, "Advanced features Session State", Section: "Session State
basics".
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Question: 6
Which statement is true about string prompt templates and their capability regarding variables?

A. They can only support a single variable at a time.
B. They are unable to use any variables.
C. They support any number of variables, including the possibility of having none.

D. They require a minimum of two variables to function properly.

Answer:

C

Explanation:

String prompt templates are designed for maximum flexibility in constructing dynamic prompts for
Large Language Models. They can be simple, static strings with no variables, or they can be
complex templates that accept one or more input variables. This allows developers to create
reusable prompt structures that can be programmatically populated with different data for various
tasks. The core functionality is to parameterize a prompt, and the number of parameters can
range from zero to many, depending on the specific use case.

Why Incorrect Options are Wrong:

A. Templates are not limited to a single variable; they are frequently used to structure prompts
with multiple dynamic inputs, such as a topic and a desired tone.

B. The primary purpose of a prompt template is to facilitate the use of variables to create dynamic
and reusable prompts.

D. There is no minimum requirement for two variables; templates with zero (static prompt) or one
variable are common and valid.

References:

1. LangChain Official Documentation, "Prompt templates": The documentation explicitly states, "A
prompt template can have no input variables, one input variable, or many input variables." It
provides examples of templates with varying numbers of variables, demonstrating their flexibility.
This directly supports the concept that any number of variables, including none, is permissible.
Source: LangChain Documentation, Section: Concepts - Prompts - Prompt templates.

2. Oracle Cloud Infrastructure (OCIl) Documentation, "Generative Al - Prompt Engineering": While
not using the exact term "string prompt template," the OCI documentation on prompt engineering
emphasizes creating structured and adaptable prompts. The principles described align with using
placeholders (variables) to inject context, which inherently supports a variable number of such
placeholders depending on the complexity of the desired output.

Source: OCI Documentation, Service: Generative Al, Section: Prompt Engineering.
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3. Vanderbilt University, "A Brief Introduction to Prompt Design": University courseware and
guides on prompt engineering consistently describe the technique of creating a base template
and then filling in "slots" or "variables." These guides illustrate templates with one, two, or more
variables, and also discuss static prompts (zero variables), confirming that no specific number is
required.

Source: Vanderbilt University, Data Science Institute, "A Brief Introduction to Prompt Design,"
Section on "Prompt Templates."
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Question: 7
When does a chain typically interact with memory in a run within the LangChain framework?

A. Only after the output has been generated
B. Before user input and after chain execution
C. After user input but before chain execution, and again after core logic but before output

D. Continuously throughout the entire chain execution process

Answer:

C

Explanation:

In a typical LangChain run, memory interaction occurs at two key points. First, after receiving the
user's input but before the main chain logic executes, the chain calls a loadmemoryvariables
method. This retrieves the conversational history or other relevant context from memory to
augment the current input. Second, after the core logic (e.g., the LLM call) has completed and
generated an output, the chain calls a savecontext method. This updates the memory with the
new input and output, preserving the state for future interactions before the final result is returned.

Why Incorrect Options are Wrong:

A. This is incorrect because memory must be read before execution to provide context to the
model; it's not just a post-execution save operation.

B. Memory is accessed after user input is received to load relevant context for that specific input,
not before.

D. The interaction is not continuous. It happens at discrete, well-defined points-primarily at the
beginning and end of the chain's core execution.

References:

1. LangChain Official Documentation, "Memory": The conceptual guide on memory explains its
function within chains. It states, "When the chain/agent is called, it uses the memory to read and
augment the user inputs... After the chain/agent has finished, it uses the memory to write the
context of the current run..." This directly supports the two-step process of reading before
execution and writing after.

Source: LangChain Python Documentation, Conceptual Guides, "Memory". Section: "How to use
memory in a chain".

2. Oracle Cloud Infrastructure Documentation, "Using LangChain with OCI Generative Al": The
integration guides demonstrate how memory objects are passed to chains. The execution flow
shown in examples implicitly follows this pattern: the ConversationChain first loads history to
formulate the prompt and then saves the new turn.
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Source: OCI Generative Al Documentation, "SDKs and CLI", "Using LangChain with OCI
Generative Al". Document ID: E99043-18, Chapter on LangChain Integration.
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Question: 8
What is the purpose of Retrieval Augmented Generation (RAG) in text generation?

A. To generate text based only on the model's internal knowledge without external data
B. To generate text using extra information obtained from an external data source
C. To store text in an external database without using it for generation

D. To retrieve text from an external source and present it without any modifications

Answer:
B

Explanation:

Retrieval Augmented Generation (RAG) is a technique that enhances the capabilities of Large
Language Models (LLMs) by dynamically incorporating information from external knowledge
sources. The process involves two main steps: first, retrieving relevant documents or data
snippets from a corpus (like a vector database) based on the user's query, and second, providing
this retrieved information as additional context to the LLM. The model then uses both its internal,
pre-trained knowledge and this new, external context to generate a more accurate, up-to-date,
and contextually relevant response.

Why Incorrect Options are Wrong:

A. This describes the standard operation of a non-RAG LLM, which relies solely on the static data
it was trained on. RAG is specifically designed to overcome this limitation.

C. This describes data warehousing or archival, not a text generation process. The core purpose

of RAG is to actively use retrieved data to inform generation.

D. This describes a standard search engine or information retrieval system, not a generative one.
RAG synthesizes a new response, it does not simply return the retrieved text verbatim.

References:

1. Oracle Cloud Infrastructure (OCIl) Documentation. "OCI Generative AlL." Oracle Help Center.
"Retrieval augmented generation (RAG) is a pattern that helps you get the most accurate and
up-to-date responses from a large language model (LLM) by giving the model access to your
data. When you use a RAG with an LLM, you add your own data to the information that the model
uses to answer questions and create responses." (Accessed under the "Retrieval Augmented
Generation" section).

2. Lewis, P., Perez, E., Piktus, A., et al. (2020). "Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks." Advances in Neural Information Processing Systems 33
(NeurlPS 2020). Section 1, Paragraph 1 states, "We present Retrieval-Augmented Generation
(RAG), a general-purpose fine-tuning recipe where the parametric memory is a pre-trained
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seq2seq model and the non-parametric memory is a dense vector index of Wikipedia, accessed
with a pre-trained neural retriever." DOI: https://doi.org/10.48550/arXiv.2005.11401

3. Stanford University. (2023). "CS224N: NLP with Deep Learning Winter 2023 Lecture 16:
Retrieval and Question Answering." Stanford University School of Engineering. The lecture
describes RAG as a method to "retrieve relevant documents, then feed documents into a model
to generate an answer," explicitly combining external retrieval with generation. (Accessed via
Stanford's public course materials).
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Question: 9
In which scenario is soft prompting appropriate compared to other training styles?

A. When there is a significant amount of labeled, task-specific data available

B. When the model needs to be adapted to perform well in a domain on which it was not originally
trained

C. When there is a need to add learnable parameters to a Large Language Model (LLM) without
task-
specific training

D. When the model requires continued pretraining on unlabeled data

Answer:
C

Explanation:

Soft prompting (also called prompt-tuning) freezes every parameter of the foundation model and
prepends a small number of new, learnable "soft-prompt" embeddings. It is therefore chosen
when you want to introduce a very small set of trainable parameters into an LLM, leaving the
model weights untouched and avoiding a full task-specific fine-tune. Other training styles (full
fine-tuning or continued pre-training) update many or all model weights and are intended for
scenarios with large labeled datasets or unlabeled domain corpora, not for the light-weight
parameter-efficient adaptation that soft prompting provides.

Why Incorrect Options are Wrong:

A. Full or adapter fine-tuning-not soft prompting-is recommended when you already possess large
labeled, task-specific data.

B. Domain adaptation to new, unlabeled text is performed through continued pre-training, not soft
prompting.

D. Continued pre-training uses an unlabeled corpus and updates all model weights; soft
prompting does neither.

References:

1. Oracle Cloud Infrastructure Documentation, "Generative Al - Choose a Training Style: Soft
Prompting," section 'Soft Prompting Overview', para 1-3 (doc version 2024-05-02).

2. Oracle University Courseware, "OCI| Generative Al: Model Customization," Module 3, Slide 17
("Soft Prompting keeps model weights frozen; only prompt vectors are learned").

3. Lester, B., Al-Rfou, R., & Constant, N. (2021). "The Power of Scale for Parameter-Efficient
Prompt Tuning," Proc. EMNLP 2021 Findings, Section2.2 ("Soft prompts add 0.1 % parameters;
model weights remain fixed"). DOI:10.18653/v1/2021.findings-emnlp.63
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4. Li, X. et al. (2022). "Prefix-Tuning: Optimizing Continuous Prompts for Generation," ACL 2022,
Section3 ("A small prompt is trained; no task-specific fine-tuning of backbone").
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Question: 10
Which is a characteristic of T-Few fine-tuning for Large Language Models (LLMs)?

A. It updates all the weights of the model uniformly.
B. It does not update any weights but restructures the model architecture.
C. It selectively updates only a fraction of the model's weights.

D. It increases the training time as compared to Vanilla fine-tuning.

Answer:

C

Explanation:

T-Few is a Parameter-Efficient Fine-Tuning (PEFT) technique. The fundamental characteristic of
PEFT methods is to freeze the vast majority of the pre-trained model's parameters and only train
a small, manageable number of new or selected weights. This approach, which in T-Few's case
involves a method called (I1A)3, significantly reduces the computational and memory requirements
compared to full fine-tuning. By selectively updating only a fraction of the model's total
parameters, T-Few can adapt a large model to new tasks with much greater efficiency.

Why Incorrect Options are Wrong:

A. This describes full or "vanilla" fine-tuning, which is computationally expensive and what
parameter-efficient methods like T-Few are designed to avoid.

B. Fine-tuning inherently involves updating weights to adapt the model. T-Few updates a small
subset of parameters, it does not simply restructure the architecture without training.

D. T-Few is a parameter-efficient method designed to be cheaper and faster than full fine-tuning,
so it decreases, not increases, training time and resource usage.

References:

1. Liu, H., Tam, D., Mugeeth, M., Mohta, J., Huang, T., Bansal, M., & Raffel, C. (2022). "Few-Shot
Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning". Advances in
Neural Information Processing Systems (NeurlPS), 35. In Section 2.1, the paper states: "During
fine-tuning, we only update the parameters of these learned vectors, keeping the pre-trained
weights frozen."

2. Oracle Cloud Infrastructure Documentation. (2024). "Methods for Customizing Models". In the
section on Parameter-Efficient Fine-Tuning (PEFT), it is stated: "PEFT is a method that fine-tunes
only a small number of extra model parameters while keeping most of the pretrained LLM
parameters frozen."

3. Stanford University. (Winter 2023). CS324: Large Language Models, Lecture 10: Adaptation
and Personalization. Slide 23, under "Parameter-Efficient Adaptation," explains that the core
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motivation of these methods is to "only update a small number of parameters."
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Question: 11
What does the RAG Sequence model do in the context of generating a response?

A. It retrieves a single relevant document for the entire input query and generates a response
based
on that alone.

B. For each input query, it retrieves a set of relevant documents and considers them together to
generate a cohesive response.

C. It retrieves relevant documents only for the initial part of the query and ignores the rest.

D. It modifies the input query before retrieving relevant documents to ensure a diverse response.

Answer:
B

Explanation:

The Retrieval-Augmented Generation (RAG) Sequence model is designed to enhance the
responses of large language models by grounding them in external knowledge. For a given input
query, the model first employs a retriever component to search a specified knowledge base (e.g.,
a vector database of documents). It identifies and retrieves a set of the most relevant documents.
This entire set of retrieved documents, along with the original query, is then used as context by
the generator component to produce a single, comprehensive, and factually-grounded response.
The key characteristic of the RAG-Sequence model is that this set of documents remains fixed
throughout the generation of the entire output sequence.

Why Incorrect Options are Wrong:

A. RAG models are designed to retrieve a set of multiple relevant documents, not just a single
one, to provide a richer and more robust context for the generator.

C. The retriever component analyzes the entire input query to understand the full context and
intent, ensuring the most relevant documents are found; it does not ignore parts of the query.

D. Modifying the input query is a separate technique known as query transformation or expansion;
it is not the core function of the RAG-Sequence model's retrieval-generation process.

References:
1. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kuttler, H., Lewis, M., Yih,
W., Rocktaschel, T., Riedel, S., & Kiela, D. (2020). Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. In Advances in Neural Information Processing Systems 33
(NeurlPS 2020). Section 2, "Models," describes the RAG-Sequence model: "This model uses the
same retrieved document to generate the complete sequence." (The model actually retrieves a
set of documents, treated as a single latent variable for the generation of the whole sequence).
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2. Oracle Cloud Infrastructure Documentation. (2024). Overview of Retrieval Augmented
Generation (RAG). OCI Generative Al service. The documentation states: "The RAG model takes
the user prompt and searches a knowledge base for relevant information. The model then uses
the information that it found to create a response to the user's prompt," which aligns with
retrieving a set of documents for a given query.

3. Gao, Y., et al. (2023). Retrieval-Augmented Generation for Large Language Models: A Survey.
arXiv preprint arXiv:2312.10997. Section 2.1, "Core Components of RAG," explains the standard
"vanilla" RAG process where the retriever fetches a set of relevant documents based on the input
query, which are then used by the LLM to generate the answer.
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Question: 12
How are documents usually evaluated in the simplest form of keyword-based search?

A. By the complexity of language used in the documents
B. Based on the number of images and videos contained in the documents
C. Based on the presence and frequency of the user-provided keywords

D. According to the length of the documents

Answer:

C

Explanation:

In its most fundamental form, keyword-based search operates on the principle of term matching.
The system evaluates documents based on the presence and frequency of the keywords
provided by the user. This is the core of early information retrieval models like the Boolean model
(presence/absence) and term frequency-based scoring (e.g., TF in TF-IDF), where a higher count
of a search term within a document generally indicates greater relevance.

Why Incorrect Options are Wrong:

A. Language complexity is a feature of advanced Natural Language Processing (NLP) for
readability or semantic analysis, not a simple keyword evaluation method.

B. The number of images and videos is irrelevant for evaluating text content in a simple
keyword-based search system.

D. Document length alone is not a primary evaluation criterion; it is often used as a normalization
factor in more sophisticated ranking algorithms to avoid bias towards longer documents.

References:

1. Oracle Text Reference, 23c: In the "Scoring" section, the documentation explains that the score
of a document is often based on the number of times a query term appears in it. The SCORE
operator in a CONTAINS query calculates relevance based on term frequency.

Source: Oracle Text Reference, 23c, Chapter 4: "The CONTAINS Operator", Section: "Scoring".
2. Manning, C. D., Raghavan, P., & Schutze, H. (2008). Introduction to Information Retrieval.
Cambridge University Press. Chapter 6, "Scoring, term weighting and the vector space model,"
introduces term frequency (tf) as a foundational component for scoring. It states, "A simple choice
is to use the raw count of a term in a document... as its weight."

Source: Chapter 6.2, "Term frequency and weighting", page 117.

DOI: https://doi.org/10.1017/CB0O9780511809071

3. MIT OpenCourseWare, 6.046J / 18.410J Introduction to Algorithms (Fall 2005). Lecture 17 on
Information Retrieval discusses the vector space model, where documents are represented as
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vectors of term weights. The simplest weight is the term frequency (tf), which is the count of a
term in a document.

Source: MIT OCW, 6.046J, Fall 2005, Lecture 17: "Information Retrieval", Section on "Vector
Space Model".
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Question: 13

Accuracy in vector databases contributes to the effectiveness of Large Language Models (LLMs)
by preserving a specific type of relationship. What is the nature of these relationships, and why
arethey crucial for language models?

A. Linear relationships; they simplify the modeling process
B. Semantic relationships; crucial for understanding context and generating precise language
C. Hierarchical relationships; important for structuring database queries

D. Temporal relationships; necessary for predicting future linguistic trends

Answer:

B

Explanation:

Vector databases store data as high-dimensional numerical representations called embeddings.
The key principle of these embeddings is that the distance between vectors in the vector space
corresponds to the semantic similarity of the original data (e.g., text). Accuracy in a vector
database refers to its ability to retrieve the vectors closest to a query vector. This preserves these
crucial semantic relationships, allowing a Large Language Model (LLM) to receive the most
relevant context. By understanding the meaning and nuances of the retrieved information, the
LLM can generate more precise, coherent, and contextually appropriate responses, which is
fundamental to its effectiveness.

Why Incorrect Options are Wrong:

A. Linear relationships; they simplify the modeling process

Vector embeddings capture complex, non-linear semantic relationships in a high-dimensional
space, not simple linear ones. The process is computationally intensive, not simplified.

C. Hierarchical relationships; important for structuring database queries

While some semantic relationships can be hierarchical, vector databases capture a much broader
spectrum of similarities. Their primary role for LLMs is context retrieval, not structuring traditional
database queries.

D. Temporal relationships; necessary for predicting future linguistic trends

The core function is to represent meaning, not the passage of time. While embeddings can be
adapted for time-series data, this is not their fundamental contribution to LLM accuracy.
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References:

1. Oracle Cloud Infrastructure Documentation, "Retrieval Augmented Generation (RAG) in OCI
Generative Al": "In the RAG model, the user's prompt is used to search a knowledge base for
relevant information. The prompt is converted into a numerical representation called an
embedding... The search results are then used to augment the user's prompt, which is then sent
to the LLM. The knowledge base is typically a vector database that stores embeddings of the
documents." This process relies on finding semantically similar content.

Source: Oracle Cloud Infrastructure Documentation, Generative Al, "Overview of Retrieval
Augmented Generation".

2. Oracle Cloud Infrastructure Documentation, "OCI Search with OpenSearch - About vector
database": "A vector database indexes and stores vector embeddings for fast retrieval and
similarity search... Instead of searching for keywords, you can search for concepts. For example,
a user query for 'cold weather jackets' might return results for 'winter coats' because their vector
embeddings are similar." This directly highlights the focus on conceptual or semantic
relationships.

Source: Oracle Cloud Infrastructure Documentation, Search with OpenSearch, "About vector
database".

3. Stanford University, CS224N: NLP with Deep Learning, Lecture 2 - "Word Vectors and Word
Senses": This lecture explains that the goal of word vectors (embeddings) is to encode meaning,
such that geometric relationships between vectors.- correspond to semantic or syntactic
relationships between words. The lecture notes state, "We want to encode the similarity between
words in the vectors." This similarity is semantic.

Source: Stanford University, CS224N Course Materials, Winter 2023, Lecture 2 Notes, Section 1
"Word2vec Introduction”.
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Question: 14
What is the purpose of Retrievers in LangChain?

A. To train Large Language Models
B. To retrieve relevant information from knowledge bases
C. To break down complex tasks into smaller steps

D. To combine multiple components into a single pipeline

Answer:

B

Explanation:

In the LangChain framework, a Retriever is a core component designed to fetch relevant
documents or data from an indexed knowledge base in response to a query. It acts as the bridge
between a user's question and a large corpus of data (e.g., a vector store). The documents
returned by the retriever are then used as context for a Large Language Model (LLM) to generate
a more accurate and informed answer, a process central to Retrieval-Augmented Generation
(RAG) architectures.

Why Incorrect Options are Wrong:

A. Training Large Language Models is a separate, resource-intensive process. LangChain is a
framework for using pre-trained LLMs, not for training them from scratch.

C. Breaking down complex tasks into smaller, executable steps is the primary function of "Agents"
and "Planners" within LangChain, which use an LLM's reasoning capabilities.

D. Combining multiple components (like retrievers, LLMs, and tools) into a sequence or pipeline is
the purpose of "Chains" in LangChain.

References:

1. LangChain Official Documentation: "A retriever is an interface that returns documents given an
unstructured query. It is more general than a vector store. A retriever does not need to be able to
store documents, only to return (or retrieve) them. Vector stores can be used as the backbone of
a retriever."

Source: LangChain Documentation, "Retrievers" section. (Accessed from
https://python.langchain.com/v0.2/docs/concepts/#retrievers)

2. Oracle Cloud Infrastructure (OCI) Documentation/Blog: In the context of building RAG solutions
with OCI Generative Al, the retriever's role is explicitly defined. "The retriever's job is to take the
user's question and find the most relevant documents from the knowledge base (in this case, OCI
OpenSearch). These documents provide the necessary context for the LLM."

Source: Oracle Blogs, "Build a RAG solution with OCI Generative Al, LangChain, and OCI
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OpenSearch," Section: "The LangChain RAG chain".

3. Academic Publication (Foundational Concept): The concept implemented by LangChain's
retrievers originates from research on Retrieval-Augmented Generation. The retriever component
is defined as a module that, given an input x, retrieves a set of relevant context documents z from
a large corpus.

Source: Lewis, P., et al. (2020). "Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks." Advances in Neural Information Processing Systems 33. Section 2: "Method," Paragraph
1. (Available via arXiv:2005.11401)
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Question: 15

In the context of generating text with a Large Language Model (LLM), what does the process of
greedy decoding entail?

A. Selecting a random word from the entire vocabulary at each step
B. Picking a word based on its position in a sentence structure
C. Choosing the word with the highest probability at each step of decoding

D. Using a weighted random selection based on a modulated distribution

Answer:

C

Explanation:

Greedy decoding is a deterministic text generation algorithm used by Large Language Models
(LLMs). At each step in the sequence generation process, the model calculates a probability
distribution over the entire vocabulary for the next word (or token). The greedy approach simply
selects the single token with the highest probability as the next output. This process is repeated
until a stop condition is met. While computationally efficient, it can lead to repetitive and
suboptimal text because it only makes the locally best choice at each step without considering the
overall quality of the full sequence.

Why Incorrect Options are Wrong:

A. Selecting a random word from the entire vocabulary at each step describes uniform random
sampling, which ignores the model's learned probability distribution.

B. Picking a word based on its position is not a decoding method; positional information is an
input to the model, not the mechanism for selecting the output.

D. This describes stochastic sampling methods like temperature sampling or nucleus (top-p)
sampling, which introduce randomness, contrary to the deterministic nature of greedy decoding.

References:

1. Oracle Official Documentation: In the Oracle Cloud Infrastructure (OCI) Generative Al service,
greedy decoding is achieved by setting the temperature parameter to 0. The documentation
states, "A lower temperature means the model is more deterministic... A temperature of 0 makes
the model completely deterministic." This forces the model to always pick the most likely token.
Source: Oracle Cloud Infrastructure Documentation, "Generative Al AP| Reference,"
GenerateTextDetails schema, temperature parameter description. (Accessed 2024).

2. University Courseware: Stanford University's course on Natural Language Processing with
Deep Learning defines greedy decoding as the process of taking the argmax (the argument that
gives the maximum value) at each step of the generation process. This means always choosing
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the word with the highest conditional probability.
Source: Stanford University, CS224N: NLP with Deep Learning, Winter 2023, Lecture 10:
"Language Models and RNNs Part 2," Slide on "Decoding from a Language Model."
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