
1 

https://certempire.com 

MICROSOFT GH-500 Exam Questions 

Total Questions: 70+ 

Demo Questions: 15 

Version: Updated for 2025 

Prepared and Verified by Cert Empire – Your Trusted IT Certification 

Partner 

For Access to the full set of Updated Questions – Visit: 

MICROSOFT GH-500 Exam Questions by Cert Empire 

https://certempire.com/
https://certempire.com/exam/gh-500-exam-dumps/
https://certempire.com/


2 

https://certempire.com 

Question: 1 

- Configure and Use Secret Scanning What is a prerequisite to define a custom pattern for a

repository? 

A. Change the repository visibility to Internal

B. Close other secret scanning alerts

C. Specify additional match criteria

D. Enable secret scanning

Answer: 

D 

Explanation: 

Custom patterns are an advanced configuration of the secret scanning feature. The base secret 

scanning functionality must be active before you can extend it with custom rules. Enabling secret 

scanning is the foundational step that allows the system to scan for secrets. Once enabled, you 

can then augment its capabilities by defining custom patterns for the repository, organization, or 

enterprise. Without the core feature being enabled, there is no scanning engine to which custom 

patterns can be applied. 

Why Incorrect Options are Wrong: 

CertEmpire 

A. Change the repository visibility to Internal: Secret scanning and custom patterns are available

for various repository visibilities (private, internal, and public on Enterprise), not just 'Internal'. This 

is not a required prerequisite step. 

B. Close other secret scanning alerts: The state of existing alerts is irrelevant to the configuration

of new scanning patterns. Alert management and pattern definition are separate, independent 

administrative tasks. 

C. Specify additional match criteria: This is an optional step during the process of defining a

custom pattern to reduce false positives, not a prerequisite before you can start defining one. 

References: 

1. GitHub Docs, "Defining custom patterns for secret scanning." Under the "Prerequisites"

section, the documentation explicitly states: "Before you can define a custom pattern for your 

repository, you must enable secret scanning for your repository." This document also confirms that 

custom patterns are a feature of GitHub Advanced Security. 

2. GitHub Docs, "Configuring secret scanning for your repositories." This page details the process

of enabling the feature, which is the necessary first step before any advanced configuration, such 

as adding custom patterns, can be performed. It establishes enabling the feature as the primary 

action. 

https://certempire.com/


3 
 

https://certempire.com 

3. GitHub Docs, "About secret scanning." This document provides an overview of the feature, 

explaining that it is enabled at the repository or organization level. This foundational enablement 

is a prerequisite for all subsequent configurations, including custom patterns. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CertEmpire 

https://certempire.com/


4 
 

https://certempire.com 

Question: 2 

- Use Code Scanning with CodeQL Where can you use CodeQL analysis for code scanning? 

(Each answer presents part of the solution. Choose two.) 

A. In a third-party Git repository 

B. In a workflow 

C. In an external continuous integration (CI) system 

D. In the Files changed tab of the pull request 

 

Answer: 

B, C 

 

Explanation: 

CodeQL analysis for code scanning can be executed in two primary environments. The most 

common method is natively within GitHub through a GitHub Actions workflow, which automates 

the process of checking out code, running the analysis, and uploading the results. For 

organizations that use other CI/CD platforms, GitHub provides the CodeQL runner, a 

command-line tool that allows the integration of CodeQL analysis into external continuous 

integration (CI) systems like Jenkins, Azure Pipelines, or CircleCI. These two methods provide 
CertEmpire 

flexibility for integrating security scanning directly into the development pipeline, regardless of the 

specific CI/CD tooling used. 

 

Why Incorrect Options are Wrong: 

A. In a third-party Git repository: CodeQL analysis is not run within a third-party repository system 

(like GitLab or Bitbucket) itself. The code must be checked out and analyzed in a separate 

compute environment, such as a CI system. 

D. In the Files changed tab of the pull request: This tab is used to display the results and alerts 

from a completed CodeQL scan, not to initiate or run the analysis. 

References: 

1. GitHub Docs, "About code scanning with CodeQL." This document outlines the primary 

methods for running CodeQL. It states, "You run CodeQL code scanning on a repository by 

adding a GitHub Actions workflow... Alternatively, if you have a complex build, you can run the 

CodeQL runner directly in your third-party CI system." This directly supports options B and C. 

2. GitHub Docs, "Configuring code scanning for a repository." This guide details the setup 

process, emphasizing the use of GitHub Actions. Section "Running code scanning using GitHub 

Actions" states, "You can run code scanning on GitHub using GitHub Actions. You enable code 

scanning by adding a workflow to your repository." This confirms option B. 

3. GitHub Docs, "Running CodeQL code scanning in your CI system." This document is dedicated 

https://certempire.com/


5 
 

https://certempire.com 

to using CodeQL outside of GitHub Actions. It begins, "If you don't use GitHub Actions, you can 

run CodeQL analysis in a third-party continuous integration (CI) system using the CodeQL 

runner." This confirms option C. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CertEmpire 

https://certempire.com/


6 
 

https://certempire.com 

Question: 3 

- Use Code Scanning with CodeQL Where can you view code scanning results from CodeQL 

analysis? 

A. The repository's code scanning alerts 

B. A CodeQL database 

C. A CodeQL query pack 

D. At Security advisories 

 

Answer: 

A 

 

Explanation: 

Code scanning results generated by CodeQL analysis are displayed as alerts within the GitHub 

repository. These alerts are aggregated under the "Security" tab, specifically in the "Code 

scanning alerts" section. This interface allows users to view, triage, and manage potential 

vulnerabilities and errors detected in the code. Each alert provides context, including the location 

of the issue in the code, a description of the vulnerability, and often, guidance on how to fix it. This 

centralized view is the primary location for interacting with code scanning findings. 
CertEmpire 

Why Incorrect Options are Wrong: 

B. A CodeQL database is an intermediate artifact containing a queryable representation of the 

code; it is used for analysis, not for viewing final results. 

C. A CodeQL query pack is a collection of queries used as an input to the analysis process to find 

vulnerabilities, not the output itself. 

D. Security advisories are used to privately discuss, fix, and publish information about 

vulnerabilities, a distinct process from viewing automated scan results. 

References: 

1. GitHub Docs, "About code scanning alerts." This document states, "You can view alerts from 

code scanning in the Security tab of your repository... Each alert shows you the problem, the 

name of the tool that identified it, and the lines of code that triggered the alert." 

2. GitHub Docs, "Managing code scanning alerts for your repository." This guide details the 

process: "You can find and fix alerts for potential vulnerabilities and errors in your repository's 

code. 1. On GitHub.com, navigate to the main page of the repository. 2. Under your repository 

name, click Security. 3. In the left sidebar, click Code scanning alerts." 

3. GitHub Docs, "About code scanning with CodeQL." This document explains the components of 

the process, clarifying that "CodeQL analyzes the CodeQL database and the results are 

displayed as code scanning alerts in GitHub." This distinguishes the database (B) from the alerts 

https://certempire.com/


7 
 

https://certempire.com 

(A). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CertEmpire 

https://certempire.com/


8 
 

https://certempire.com 

Question: 4 

- Use Code Scanning with CodeQL When using CodeQL, what extension stores query suite 

definitions? 

A. .yml 

B. .ql 

C. .qll 

D. .qls 

 

Answer: 

D 

 

Explanation: 

In CodeQL, a query suite is a collection of queries designed to be run together. The definition for 

a query suite is stored in a file with the .qls extension. These files use a specific YAML-based 

format to specify which queries to include or exclude from the analysis. This allows for the 

creation of custom, targeted sets of security checks. For example, a .qls file can reference 

individual queries, directories containing queries, or other query suite files. 
 

Why Incorrect Options are Wrong: 
CertEmpire 

A. .yml: This extension is used for GitHub Actions workflow files, which define the steps to run 

CodeQL analysis, but not the query suite definition itself. 

B. .ql: This is the file extension for an individual CodeQL query, which contains the logic to identify 

a specific pattern or vulnerability. 

C. .qll: This extension denotes a CodeQL library file. These files contain reusable modules, 

classes, and predicates that are imported by .ql files. 

References: 

1. GitHub Docs, "Creating CodeQL query suites." This document explicitly states, "Query suite 

definitions are stored in files with the extension .qls." It further details the YAML-based structure 

used within these files to define the collection of queries. 

Source: GitHub, CodeQL Code Scanning Documentation. Section: "Creating CodeQL query 

suites." 

2. GitHub Docs, "About CodeQL queries." This page describes the different files used in CodeQL 

analysis, clarifying the roles of .ql and .qll files. It defines a .ql file as a query and a .qll file as a 

"query library" used to help write queries. 

Source: GitHub, CodeQL Code Scanning Documentation. Section: "About CodeQL queries." 

https://certempire.com/


9 
 

https://certempire.com 

Question: 5 

- Configure GitHub Advanced Security Tools in GitHub Enterprise What role is required to change 

a repository's code scanning severity threshold that fails a pull request status check? 

A. Maintain 

B. Write 

C. Triage 

D. Admin 

 

Answer: 

D 

 

Explanation: 

Modifying the code scanning severity threshold for pull request checks is a repository-level 

security setting. This action is performed under the "Code security and analysis" section of a 

repository's settings. According to the official GitHub permission model, only users with the 

'admin' role have the authority to access and change these critical security configurations. This 

level of control is reserved for administrators to ensure that the repository's security policies are 

managed securely and consistently. 

 
Why Incorrect Options are Wrong: 

CertEmpire 

A. Maintain: The 'maintain' role can manage some repository settings, such as topics and 

collaborators, but lacks the permissions to alter core security and analysis configurations. 

B. Write: The 'write' role grants permissions to contribute code, create branches, and manage pull 

requests, but it does not include access to repository settings. 

C. Triage: The 'triage' role is the most limited, allowing users to manage issues and pull requests 

without any write access or ability to change settings. 

References: 

1. GitHub Docs, "Repository roles for an organization": This document explicitly states that the 

admin role is required to "Manage repository security and analysis settings." The maintain, write, 

and triage roles do not have this permission. (See the permissions table under the "Permissions 

for each role" section). 

2. GitHub Docs, "Configuring code scanning": This guide details the process for setting up and 

customizing code scanning. It notes that to access the configuration page (Settings Code security 

and analysis), a user must have admin permissions for the repository. (See the "Prerequisites" or 

introductory sections of the configuration guides). 

https://certempire.com/


10 
 

https://certempire.com 

Question: 6 

- Use Code Scanning with CodeQL When configuring code scanning with CodeQL, what are your 

options for specifying additional queries? (Each answer presents part of the solution. Choose 

two.) 

A. Packs 

B. github/codeql 

C. Scope 

D. Queries 

 

Answer: 

A, D 

 

Explanation: 

When using an advanced setup for CodeQL, you can specify additional queries to run alongside 

the default suite by creating a configuration file. This file uses the queries key to define a list of 

specific .ql files or directories to run. Alternatively, the packs key can be used to include one or 

more CodeQL query packs, which are collections of queries, often used for custom or specialized 

security checks. Both methods allow for the extension of the default code scanning analysis. 
CertEmpire 

Why Incorrect Options are Wrong: 

B. github/codeql is the repository containing the standard CodeQL queries, not a configuration 

key for adding custom ones. 

C. Scope is not a recognized key in the CodeQL configuration file for specifying additional 

queries. 

References: 

1. GitHub Docs. (n.d.). Customizing your advanced setup for code scanning. Retrieved from https 

://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scannin 

g/customizing-your-advanced-setup-for-code-scanning 

For option D (Queries): In the section "Specifying queries to run," the documentation states, "You 

can use queries to specify which queries to run in your configuration file." It provides examples of 

using the uses keyword to point to a .ql file, a directory containing queries, or a query suite 

definition file. 

For option A (Packs): In the section "Running additional query packs," the documentation 

explains, "To add one or more CodeQL query packs, add a packs entry to your configuration file." 

It shows how to list packs to be used in the analysis. 

https://certempire.com/


11 
 

https://certempire.com 

Question: 7 

- Configure GitHub Advanced Security Tools in GitHub Enterprise What step is required to run a 

SARIF-compatible (Static Analysis Results Interchange Format) tool on GitHub Actions? 

A. Update the workflow to include a final step that uploads the results. 

B. By default, the CodeQL runner automatically uploads results to GitHub on completion. 

C. The CodeQL action uploads the SARIF file automatically when it completes analysis. 

D. Use the CLI to upload results to GitHub. 

 

Answer: 

A 

 

Explanation: 

To integrate a SARIF-compatible static analysis tool with GitHub code scanning using GitHub 

Actions, the workflow must be explicitly configured with multiple steps. After a step runs the 

analysis tool and generates a SARIF file, a distinct, final step is required to upload this file to 

GitHub. This is accomplished using the github/codeql-action/upload-sarif action. This action takes 

the path to the SARIF file as input and uploads its findings to the repository's security tab, 

populating the code scanning alerts. This process is required for all third-party static analysis 
CertEmpire 

tools. 

 

Why Incorrect Options are Wrong: 

B. The GitHub Actions runner only executes the jobs defined in a workflow; it does not have 

default behaviors like automatically uploading specific file types. 

C. This is only true for the native CodeQL action's analyze step. The question refers to any 

"SARIF-compatible tool," which includes third-party tools that require a separate upload step. 

D. While the GitHub CLI (gh) can upload SARIF files, the idiomatic and recommended method 

within a GitHub Actions workflow is to use the dedicated upload-sarif action. 

References: 

1. GitHub Docs, "Uploading a SARIF file to GitHub." This document explicitly states, "You can use 

the github/codeql-action/upload-sarif action to upload a SARIF file... This is useful when you use a 

static analysis tool other than CodeQL." It provides a clear YAML example with a final step 

dedicated to the upload: 

yaml 

- name: Upload analysis results to GitHub 

uses: github/codeql-action/upload-sarif@v3 

with: 

sariffile: results.sarif 

https://certempire.com/


12 
 

https://certempire.com 

Source: GitHub Enterprise Cloud Documentation, "Code security," "Code scanning," "Integrating 

with code scanning," "Uploading a SARIF file to GitHub." 

2. GitHub Docs, "About SARIF file uploads for code scanning." This page clarifies the general 

requirement: "You need to run your SARIF-compatible analysis tool in a GitHub Actions 

workflow... and include a step that uploads the results.sarif file." 

Source: GitHub Enterprise Cloud Documentation, "Code security," "Code scanning," "Integrating 

with code scanning," "About SARIF file uploads for code scanning." 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CertEmpire 

https://certempire.com/


13 
 

https://certempire.com 

Question: 8 

- Assessing Code Scanning Alerts You are managing code scanning alerts for your repository. 

You receive an alert highlighting a problem with data flow. What do you click for additional context 

on the alert? 

A. Show paths 

B. Security 

C. Code scanning alerts 

 

Answer: 

A 

 

Explanation: 

When a code scanning alert identifies a data flow problem, it means potentially untrusted data is 

being used in an unsafe way. To understand the vulnerability, you need to trace the path of this 

data from its origin (the source) to where it's used unsafely (the sink). The GitHub interface 

provides a specific control for this purpose. By clicking Show paths, you can expand the alert 

details to see a step-by-step visualization of the data's journey through the codebase, providing 

the necessary context to remediate the issue. 

Why Incorrect Options are Wrong: 

CertEmpire 

B. Security: This is the top-level tab in a repository's navigation where you access all 

security-related features, not a specific action taken within an alert. 

C. Code scanning alerts: This is the link under the "Security" tab that takes you to the list of all 

alerts, not the control used to get more context on a single, specific alert. 

References: 

1. GitHub Docs, "Managing code scanning alerts for your repository." Under the section "Viewing 

the details of an alert," the documentation states: "For alerts that highlight a data-flow problem, 

you can also view the path from the data source to the sink. To view the data flow path, click 

Show paths." This directly confirms the function of the "Show paths" link for data flow analysis. 

2. GitHub Docs, "About code scanning alerts." In the section "About data flow analysis," it 

explains: "Data flow analysis finds potential security issues in code by tracking the flow of data 

from a source... to a sink... Code scanning shows you how the data travels from the source to the 

sink in the alert details." This establishes the concept that viewing the path is the primary way to 

get context. 

https://certempire.com/


14 
 

https://certempire.com 

Question: 9 

- Configure and Use Secret Scanning Secret scanning will scan: 

 
A. A continuous integration system. 

B. Any Git repository. 

C. The GitHub repository. 

D. External services. 

 

Answer: 

C 

 

Explanation: 

GitHub secret scanning is a native security feature that operates specifically on repositories 

hosted on the GitHub platform (GitHub.com and GitHub Enterprise). It automatically scans the 

entire Git history of all branches within a repository to find accidentally committed secrets, such 

as tokens and private keys. The scope of the scan is confined to the content of the GitHub 

repository itself, making it a repository-centric security tool. 

 

Why Incorrect Options are Wrong: 
 

 
CertEmpire 

A. Secret scanning is a GitHub feature that scans repository content, not the continuous 

integration system's infrastructure or configuration itself. 

B. The feature is specific to repositories hosted on GitHub. It does not scan any arbitrary Git 

repository hosted on other platforms like GitLab or a private server. 

D. Secret scanning finds credentials for external services that are located within a repository; it 

does not scan the external services themselves. 

References: 

1. GitHub Docs, "About secret scanning." This document explicitly states, "Secret scanning scans 

your entire Git history on all branches present in your GitHub repository for secrets." This 

confirms the feature's scope is the GitHub repository. 

Source: https://docs.github.com/en/code-security/secret-scanning/about-secret-scanning, Section: 

"About secret scanning." 

2. Microsoft Learn, "Configure secret scanning," GH-500 Learning Path. The official training 

material for the exam describes the feature's function: "GitHub scans repositories for known types 

of secrets to prevent fraudulent use of secrets that were committed by accident." The context is 

always a repository on GitHub. 

Source: https://learn.microsoft.com/en-us/training/modules/configure-secret-scanning-in-your-rep 

o/2-what-is-secret-scanning, Paragraph 1. 

3. GitHub Docs, "Managing security and analysis settings for your repository." The configuration 

https://certempire.com/


15 
 

https://certempire.com 

process for secret scanning is performed within the settings of a specific GitHub repository, 

reinforcing that its operational boundary is the repository. 

Source: https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/ 

enabling-features-for-your-repository/managing-security-and-analysis-settings-for-your-repository, 

Section: "Allowing or disallowing features for your private repository." 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CertEmpire 

https://certempire.com/


16 
 

https://certempire.com 

Question: 10 

- Configure and Use Dependency Management Which of the following formats are used to 

describe a Dependabot alert? (Each answer presents a complete solution. Choose two.) 

A. Common Weakness Enumeration (CWE) 

B. Exploit Prediction Scoring System (EPSS) 

C. Common Vulnerabilities and Exposures (CVE) 

D. Vulnerability Exploitability exchange (VEX) 

 

Answer: 

A, C 

 

Explanation: 

Dependabot alerts are powered by the GitHub Advisory Database. When a vulnerability is 

identified, the resulting alert uses standardized formats to describe it. The Common Vulnerabilities 

and Exposures (CVE) system provides a unique identifier for each specific, publicly known 

cybersecurity vulnerability. Additionally, the Common Weakness Enumeration (CWE) is used to 

classify the type of software or hardware weakness that led to the vulnerability (e.g., CWE-79 for 

Cross-site Scripting). Both formats are integral to the information presented in a Dependabot 
CertEmpire 

alert, providing both a unique ID and a categorical description. 

 

Why Incorrect Options are Wrong: 

B. Exploit Prediction Scoring System (EPSS): This is a scoring system that estimates the 

probability of a vulnerability being exploited. It provides a metric for prioritization, not a format for 

describing the vulnerability itself. 

D. Vulnerability Exploitability eXchange (VEX): VEX is a format used to communicate the status of 

a vulnerability within a specific product (e.g., "not affected"), rather than describing the initial 

vulnerability alert. 

References: 

1. GitHub Docs, "About the GitHub Advisory Database": This document explicitly states, "Each 

security advisory includes information about the vulnerability, which may include... a CVE 

(Common Vulnerabilities and Exposures) identifier... and one or more Common Weakness 

Enumeration (CWE) identifiers." This directly confirms the use of both CVE and CWE. 

Source: GitHub, Inc. (2024). About the GitHub Advisory Database. GitHub Docs. Retrieved from h 

ttps://docs.github.com/en/code-security/security-advisories/global-security-advisories/about-the-gi 

thub-advisory-database (See the section "About security advisories"). 

2. GitHub Docs, "About Dependabot alerts": This page clarifies that Dependabot alerts are based 

on vulnerabilities from the GitHub Advisory Database, which uses CVE identifiers. 

https://certempire.com/


17 
 

https://certempire.com 

Source: GitHub, Inc. (2024). About Dependabot alerts. GitHub Docs. Retrieved from 

https://docs.github.com/en/code-security/dependabot/dependabot-alerts/about-dependabot-alerts 

(See the section "Detection of insecure dependencies"). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CertEmpire 

https://certempire.com/


18 
 

https://certempire.com 

Question: 11 

- Describe GitHub Advanced Security Best Practices What kind of repository permissions do you 

need to request a Common Vulnerabilities and Exposures (CVE) identification number for a 

security advisory? 

A. Maintain 

B. Admin 

C. Triage 

D. Write 

 

Answer: 

B 

 

Explanation: 

To request a Common Vulnerabilities and Exposures (CVE) identification number, you must first 

create a repository security advisory. According to official GitHub documentation, creating and 

managing security advisories is a privileged action that requires administrator permissions for the 

repository. This ensures that only authorized individuals can publicly disclose and manage 

vulnerabilities associated with the repository's codebase. The process of requesting a CVE is an 
CertEmpire 

integral part of managing the advisory, and thus inherits the same permission requirement. 

 

Why Incorrect Options are Wrong: 

A. Maintain: Users with Maintain permissions can manage many repository settings but lack the 

authority to create security advisories or request CVEs. 

C. Triage: The Triage role is limited to managing issues and pull requests and does not include 

permissions for security management features. 

D. Write: The Write role allows users to contribute code and manage pull requests but does not 

grant access to repository security settings like advisories. 

References: 

1. GitHub Docs, "Creating a repository security advisory." Under the "Prerequisites" section, it 

explicitly states: "You must have admin permissions for the repository." This prerequisite applies 

to the entire advisory creation process, which includes requesting a CVE. 

Source: GitHub Official Documentation. Retrieved from https://docs.github.com/en/code-security/s 

ecurity-advisories/repository-security-advisories/creating-a-repository-security-advisory#prerequisi 

tes 

2. GitHub Docs, "About GitHub Security Advisories for repositories." This document clarifies the 

roles involved, stating, "Repository owners and security managers have admin permissions for 

security advisories in a repository." This reinforces that administrative-level access is the 

https://certempire.com/


19 
 

https://certempire.com 

foundation for managing advisories. 

Source: GitHub Official Documentation. Retrieved from https://docs.github.com/en/code-security/s 

ecurity-advisories/repository-security-advisories/about-github-security-advisories-for-repositories 

3. GitHub Docs, "Permission levels for a personal account repository." The repository roles and 

permissions table confirms that actions related to "Manage security advisories" are exclusively 

available to the Admin role. 

Source: GitHub Official Documentation. Retrieved from https://docs.github.com/en/account-and-pr 

ofile/setting-up-and-managing-your-personal-account-on-github/managing-access-to-your-person 

al-repositories/permission-levels-for-a-personal-account-repository 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CertEmpire 

https://certempire.com/


20 
 

https://certempire.com 

Question: 12 

- Use Code Scanning with CodeQL As a developer with write access, you navigate to a code 

scanning alert in your repository. When will GitHub close this alert? 

A. After you triage the pull request containing the alert 

B. When you use data-flow analysis to find potential security issues in code 

C. After you find the code and click the alert within the pull request 

D. After you fix the code by committing within the pull request 

 

Answer: 

D 

 

Explanation: 

GitHub automatically closes a code scanning alert when the underlying issue in the code is 

resolved. This process involves a developer committing a fix to the branch where the alert was 

detected. When the branch is re-scanned (typically after the commit is pushed, often within a pull 

request), the CodeQL analysis will no longer detect the vulnerability. Upon confirming the absence 

of the issue in the latest analysis for that branch, GitHub marks the alert as fixed and closes it. 
 

Why Incorrect Options are Wrong: 
CertEmpire 

A. Triaging an alert involves manually reviewing and dismissing it (e.g., as a false positive or 

acceptable risk), which is a different action from fixing the code to resolve it. 

B. Data-flow analysis is a technique used by CodeQL to find potential security issues; it is part of 

the detection process, not the resolution or closure process. 

C. Clicking an alert within a pull request is a navigational action for viewing its details; it does not 

alter the code or the status of the alert. 

References: 

1. GitHub Docs, "Managing code scanning alerts for your repository." Under the section "Fixing an 

alert," the documentation states, "GitHub automatically closes an alert if you fix the code in a pull 

request... GitHub closes an alert when code scanning determines that the code with the potential 

vulnerability is no longer present in the latest analysis for a branch." 

2. Microsoft Learn, "Manage code scanning alerts in GitHub." In the "Fix code scanning alerts" 

unit, it is specified that "GitHub closes an alert automatically when you fix the code that triggered 

it. To fix an alert, you need to commit your changes to the branch where the alert was found." 

3. GitHub Docs, "About code scanning alerts." In the section "About the status and details of 

alerts," it clarifies the lifecycle: "An alert is usually closed when a user fixes the code that triggered 

the alert and pushes their changes to the branch that is being scanned." 

https://certempire.com/


21 
 

https://certempire.com 

Question: 13 

- Configure and Use Secret Scanning Which details do you have to provide to create a custom 

pattern for secret scanning? (Each answer presents part of the solution. Choose two.) 

A. The secret format 

B. The name of the pattern 

C. A list of repositories to scan 

D. Additional match requirements for the secret format 

 

Answer: 

A, B 

 

Explanation: 

When defining a custom pattern for GitHub secret scanning, two fields are mandatory for its 

creation. You must provide a unique Name to identify and manage the pattern. You must also 

define the Secret format using a regular expression (regex). This regex is the core of the pattern, 

specifying the structure of the secret that the scanning engine will search for. These two 

components are the minimum required details to save a new custom pattern at the organization or 

enterprise level. 
CertEmpire 

 

Why Incorrect Options are Wrong: 

C. A list of repositories to scan 

Specifying repositories is part of enabling or configuring a scan, not defining the pattern itself. 

D. Additional match requirements for the secret format 

These are optional settings, such as "surrounding content," used to refine the main pattern and 

reduce false positives, not a mandatory creation detail. 

References: 

1. GitHub Docs, "Defining custom patterns for secret scanning." This official documentation 

outlines the steps for creating a custom pattern. In the section "Creating a custom pattern," it 

explicitly lists "Name" and "Secret format (regex)" as required fields. It also describes "Additional 

match requirements" as an optional step to refine results. The process described does not include 

selecting repositories during pattern creation. 

Reference Location: Navigate to the "Creating a custom pattern" section. The input fields in the UI 

steps clearly distinguish between required and optional information. 

2. GitHub Docs, "About secret scanning." This document provides an overview of the feature and 

distinguishes between defining patterns and enabling them for repositories. It clarifies that 

patterns are defined at the organization/enterprise level before being applied to specific 

repositories or all repositories. 

https://certempire.com/


22 
 

https://certempire.com 

Reference Location: See the section on "Defining custom patterns for secret scanning." 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CertEmpire 

https://certempire.com/


23 
 

https://certempire.com 

Question: 14 

- Configure and Use Dependency Management Assuming that notification settings and 

Dependabot alert recipients have not been customized, which user account setting should you 

use to get an alert when a vulnerability is detected in one of your repositories? 

A. Enable all in existing repositories 

B. Enable by default for new public repositories 

C. Enable all for Dependabot alerts 

D. Enable all for Dependency graph 

 

Answer: 

C 

 

Explanation: 

To receive alerts for detected vulnerabilities, you must enable the "Dependabot alerts" feature. 

Within your personal account's "Code security and analysis" settings, selecting "Enable all" for 

Dependabot alerts activates this feature for all repositories you own. This action configures 

GitHub to automatically scan your dependencies, identify vulnerabilities, and generate alerts. 

While the Dependency graph is a prerequisite, it only identifies dependencies; it does not 
CertEmpire 

generate the vulnerability alerts itself. 

 

Why Incorrect Options are Wrong: 

A. Enable all in existing repositories: This option is too generic. It does not specify which security 

feature (e.g., Dependabot alerts, Secret scanning, Code scanning) should be enabled. 

B. Enable by default for new public repositories: This setting only applies to newly created public 

repositories and would not activate alerts for any existing or private repositories. 

D. Enable all for Dependency graph: Enabling the Dependency graph is a necessary prerequisite, 

as it identifies the project's dependencies. However, it does not generate vulnerability alerts on its 

own; that is the specific function of Dependabot alerts. 

--- 

 

References: 

1. GitHub Docs, "Managing security and analysis settings for your user account." 

Location: Section "Enabling or disabling features for existing repositories." 

Content: This document explicitly outlines the steps to manage security features. It states, "Under 

'Code security and analysis', find the feature you want to manage... To the right of the feature, 

click Disable all or Enable all." It lists "Dependabot alerts" as a distinct feature that can be 

enabled, which is the direct action required to receive vulnerability alerts. 

2. GitHub Docs, "About Dependabot alerts." 

https://certempire.com/


24 
 

https://certempire.com 

Location: Introduction section. 

Content: This page clarifies the relationship between the dependency graph and alerts: 

"Dependabot alerts are generated when GitHub detects that a repository uses a dependency with 

a known vulnerability... The dependency graph is a prerequisite for Dependabot alerts." This 

confirms that enabling the graph (Option D) is insufficient and that enabling "Dependabot alerts" 

(Option C) is the correct, specific action. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
CertEmpire 

https://certempire.com/


25 
 

https://certempire.com 

Question: 15 

- Describe GitHub Advanced Security Best Practices Which of the following benefits do code 

scanning, secret scanning, and dependency review provide? 

A. Search for potential security vulnerabilities, detect secrets, and show the full impact of changes 

to 

dependencies 

B. Confidentially report security vulnerabilities and privately discuss and fix security vulnerabilities 

in 

your repository's code 

C. View alerts about dependencies that are known to contain security vulnerabilities 

D. Automatically raise pull requests, which reduces your exposure to older versions of 

dependencies 

Answer: 

A 

 

Explanation: 

GitHub Advanced Security (GHAS) is a suite of security features. The question specifically asks 
CertEmpire 

about three of its core components: 

1. Code scanning analyzes your code to find security vulnerabilities and coding errors. 

2. Secret scanning detects secrets, such as API keys and tokens, that have been checked into 

the repository. 

3. Dependency review allows you to visualize dependency changes and their security impact 

directly within a pull request, helping you understand the full effect before merging. 

Option A accurately summarizes the primary function of each of these three distinct features. 

 

Why Incorrect Options are Wrong: 

B. This describes private vulnerability reporting, a feature that allows security researchers to 

disclose vulnerabilities to repository maintainers confidentially, which is separate from the listed 

GHAS tools. 

C. This describes Dependabot alerts, which notify you about existing dependencies with known 

vulnerabilities in your repository, but it doesn't cover code scanning or secret scanning. 

D. This describes Dependabot security and version updates, which automatically create pull 

requests to update dependencies, a different function from the three features mentioned in the 

question. 

https://certempire.com/


26 
 

https://certempire.com 

References: 

1. GitHub Docs, "About GitHub Advanced Security." This document provides an overview, stating, 

"GitHub Advanced Security features are available for enterprise accounts on GitHub Enterprise 

Cloud and GitHub Enterprise Server... It provides additional features... such as code scanning, 

secret scanning, and dependency review." 

Source: 

https://docs.github.com/en/get-started/learning-about-github/about-github-advanced-security 

2. GitHub Docs, "About code scanning." Section: "About code scanning." It states, "Code 

scanning is a feature that you use to analyze the code in a GitHub repository to find security 

vulnerabilities and coding errors." 

Source: https://docs.github.com/en/code-security/code-scanning/introduction-to-code-scanning/ab 

out-code-scanning 

3. GitHub Docs, "About secret scanning." Section: "About secret scanning." It explains, "Secret 

scanning helps protect you by searching repositories for known types of secrets... GitHub scans 

the content for secrets." 

Source: https://docs.github.com/en/code-security/secret-scanning/about-secret-scanning 

4. GitHub Docs, "About dependency review." Section: "What is dependency review?" It details, 

"Dependency review helps you understand dependency changes and the security impact of these 

changes at every pull request... You can clearly see what's changed in a pull request." 

Source: https://docs.github.com/en/code-secur iCtye r/tsEumpp ipr ely-chain-security/understanding-your-softw 

are-supply-chain/about-dependency-review 

https://certempire.com/



